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Transient cavities near boundaries 
Part 2. Free surface 
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Calculations of the growth and collapse of transient vapour cavities near a free surface 
when buoyancy forces may be important are made using the boundary-integral 
method described in Part 1. Bubble shapes, particle paths, pressure contours and 
centroid motion are used to illustrate the calculations. In  the absence of buoyancy 
forces the bubble migrates away from the free surface during the collapse phase, 
yielding a liquid jet directed away from the free surface. When the bubble is 
sufficiently close to the free surface, the nonlinear response of the free surface 
produces a high-speed jet (‘spike’) that moves in the opposite direction to the liquid 
jet and, in so doing, produces a stagnation point in the fluid between the bubble and 
the free surface. For sufficiently large bubbles, buoyancy forces may be dominant, 
so that the bubble migrates towards the free surface with the resulting liquid jet in 
the same direction. The Kelvin impulse provides a reasonable estimate of the physical 
parameter space that determines the migratory behaviour of the collapsing bubbles. 

1. Introduction 
The interaction between a pulsating bubble and a free surface was first studied in 

the case of underwater explosions, the main concern being the influence of the free 
surface on the direction of motion of the bubble and the period of oscillation (see for 
example Holt 1977). Experimental observations reported in Gibson (1968), Chahine 
(1977), Gibson & Blake (1980), Blake & Gibson (1981), and theoretical and numerical 
calculations reported in Blake & Gibson (1981), Blake & Cerone (1982), Blake (1983), 
and Cerone & Blake (1984) showed that the bubble motion and the jet formed during 
the bubble collapse are directed away from a free surface in contrast to the case of 
a bubble collapsing near a rigid boundary when the bubble motion and the jet are 
directed toward8 the boundary. 

To facilitate the use of high-speed cameras in experimental studies of vapour- 
bubble dynamics, the lifetime of the bubble is increased by reducing the ambient fluid 
pressure, resulting in relatively large bubbles for which buoyancy forces might 
become important. Using this technique, Chahine & Bovis (1980), observed two 
different directions of motion of a cavitation bubble beneath a two-liquid interface 
(with the bubble located in the denser liquid). The bubble migrated away from the 
interface when closer than a certain critical distance and moved towards it if further 
away. The case when the bubble moves towards the interface may be due to buoyancy 
forces, as our numerical calculations and the theoretical calculation of Blake & Cerone 
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(1982) suggest that, without buoyancy forces, the bubble should always move away 
from the less-dense fluid. 

While the rigid boundary may be regarded as the infinite-inertia limit for a 
boundary, a free surface is the exact opposite being the zero-inertia limit. Thus we 
might expect that, near a deformable boundary, the bubble response might lie 
somewhere between these two extremes. 

In a recent paper Gibson & Blake (1982) suggested that a suitable deformable, yet 
resilient, material might be used to coat rigid hydraulic structures to reduce, or even 
eliminate, cavitation damage. In a companion paper Blake, Taib & Doherty (1986, 
hereinafter referred to as Part 1) consider the motion of a cavitation bubble near a 
rigid boundary in the presence of buoyancy forces and an incident stagnation-point 
flow. While we cannot include stagnation-point flow in this study of the free surface 
we can readily include buoyancy forces and thus compare and contrast the response 
of the bubble near a free surface with that near a rigid boundary. 

In  this paper we apply the boundary-integral method developed in Taib, Doherty 
& Blake (1984) to the study of buoyant vapour cavities near a free surface. 
Calculations yield details of the bubble and free-surface shape, particle pathlines, 
centroid motion and contours of the pressure field. This numerical study appears to 
be of significantly higher accuracy than earlier studies of the free-surface problem 
by Lenoir (1976), Blake & Gibson (1981), Cerone & Blake (1984) and Blake, Cerone 
& Gibson (1984). In  our study the computations are usually terminated when the 
high-speed jet is about to pierce the free surface on the other side of the bubble. A 
brief discussion of the numerical techniques employed in the free-surface calculations 
may also be found in $2, although a more extensive discussion may be found in Part 1 
and in Taib et al. (1984). Results of the calculations for bubble shapes, particle 
pathlines, centroid motion and pressure contours are shown in $3. 

Following the ideas developed for the Kelvin impulse in Part 1 we are able to 
extend the calculations for the critical parameters that were initially developed in 
the report by Blake et al. (1984). With the following parameters defined: 

where h is the distance of the bubble centroid from the free surface initially, R, is 
the maximum bubble radius, p the density, g gravitational acceleration and Ap is the 
difference between the ambient pressure at the centroid, in the absence of the bubble, 
and the vapour pressure, they showed that the magnitude of /3 determined the sign 
of the Kelvin impulse and hence the direction of migration and subsequent jet 
formation in the cavitation bubble. Experimental, analytical and numerical studies 
appear to confirm that the critical value of /3 lies around 0.5. A modification of their 
calculations is presented in $4 yielding a smaller critical value of /3 but with some 
modifications near y x 1.0. 

In the concluding section the present results are summarized and compared with 
the previously obtained results for a rigid boundary that were present in Part 1. 

2. Theory and numerical analysis 
In this section supplementary theory to that presented in Part 1 is developed to 

model the growth and collapse of an axisymmetric cavitation bubble near a free 
surface while the bubble is subject to buoyancy forces. Buoyancy forces are typically 
unimportant in cavitation but are of the utmost importance in underwater explosions. 
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Cavitation 
bubble ’ S Q 

FIGURE 1. Geometry used to model the growth and collapse of a vapour bubble 
near a free surface. 

Buoyancy forces also allow the introduction of a pressure gradient into the dynamics 
of bubble motion without an associated ambient-fluid motion. Details of the 
geometry may be found in figure 1. 

As in Part 1 we assume that the fluid motion is incompressible, inviscid and 
irrotational with the action of surface tension being neglected on both the bubble and 
free surface. Thus we may represent the velocity as the gradient of a potential which 
satisfies Laplace’s equation as follows: 

u =  V$, VZ$ =o ,  (2) 

where u is the Cartesian velocity vector and $ is the potential. 
Initially the cavitation bubble is taken to be a sphere of ‘small’ radius R, whose 

centre is located a distance h below the free surface. The initial potential on the bubble 
surface at time to is obtained from the Rayleigh bubble solution $? appropriately 
modified for the presence of the flat free surface by incorporating the negative image 
as follows : 

where 

where t, is the initial time which can be expressed in terms of an incomplete beta 
function 

Here A p  is the difference in pressure between the initial static pressure at h and the 
vapour pressure p, (i.e. Ap = po+pgh-p,) ,  p is the density, while x and r are 
the axial and radial cylindrical polar coordinates respectively. The potential on the 
initially flat free surface is taken to be zero as would occur in the linear theory. A t  
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large distances from the bubble, the velocity tends to zero while the pressure 
approaches the static pressure field, i.e. 

+ 0, P +Po + pgx, (4) 

where po is the constant pressure on the free surface. 

these ‘particle velocities’ to be the fluid velocity as follows: 
As the fluid particles remain on the bubble surface and free surface, we may take 

dx 
dt 
- = [V$]. 

That is, we are using a Lagrangian description for the surface particles to specify the 
shape of the bubble and the free surface. The dynamic condition on the bubble surface 
is obtained by equating the dynamic pressure to the vapour pressure, 

while on the free surface it is equated to the constant pressure po ,  

Before developing the numerical solutions it proves convenient to scale all terms in 
the equations to make them dimensionless and to yield the dimensionless groups of 
(1). Lengths are scaled with respect to the maximum bubble radius: 

(8) 
5 r 

Rm Rm 
X = -, R = -. 

Quantities involving time explicitly or implicitly are scaled with respect to 

The dimensionless pressure field P is defined as 

P-P, P =  
Po + Pgh - PI2 

Equations (6) and (7) may be rearranged and scaled to yield a$/& for the bubble 

w - at = l-+lu12+62(X-y), 

- at = -+Jul2+62X. 

and for the free surface 
a$ 

Physically 6 corresponds to the ratio of the half-lifetime of the bubble to the time 
it takes a bubble of radius Rm to rise one radius from rest due to buoyancy forces. 

The above equations are solved by using a boundary-integral method, as outlined 
in Taib et al. (1984) and in Part 1.  The appropriate formulation is as follows, 

where $ is the potential, a$/& the normal velocity with n the outward normal, S 
the bubble surface and Z the free surface (see figure 1). The coefficient c takes the 
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value 271 if a point lies on either the bubble or the free surface and 4n if it  is in the 
domain of the fluid. The Green function G that is used in this study is that due to 
a source in an infinite fluid, in contrast to Part 1 which also includes the image source 
to balance the zero normal velocity on the surface of the rigid boundary. Because of 
axisymmetry the Green function may be integrated through the azimuthal angle to 
yield an expression containing complete elliptic integrals. 

The surface of the bubble and the free surface are specified by N +  1 and M +  1 
Lagrangian points respectively. This leads to Nand M segments on which 5, r ,  $ and 
&$/an need to be specified by a linear isoparametric approximation. 

As the initial bubble shape and the potential are specified, the appropriate strategy 
is to solve (12) for the normal velocity a$/an. This, together with the tangential 
velocity, enables us to calculate the velocity of all the specified points on both the 
surface of the bubble and free surface, and hence update their position and potential 
using the following relations : 

x,(t+At) = ~ , ( t ) + u , A t + O ( A t ) ~ ,  

r,(t + At) = r,(t) + vI At + O(At)2,  

$,(t + At) = $,(t) + (%+ a$ IuIp) At + O(At)2.  
I 

The values for a$/at may be obtained from (1 1 a ,  b)  noting that they are different 
for the bubble and the free surface. This procedure is repeated until the bubble has 
collapsed, thus yielding a time history of the bubble shape and particle paths and 
also allowing the calculation of the pressure field and instantaneous streamlines at 
specially chosen times. In the next section our calculations are illustrated in graphical 
form. Further details of the numerical-analysis procedures may be found in Part 1 
and Taib et al. (1984). 

For values of y near 1 the free surface developed a saw-toothed-like profile close 
to the axis of symmetry when the cavitation bubble was near maximum size. This 
instability was removed by using the five-point smoothing formula of Longuet- 
Higgins & Cokelet (1976). The smoothing formula was applied after every five 
time-steps. 

3. Computational results 
In  this section we illustrate bubble and free-surface shapes, particle paths, centroid 

motion and pressure contours for a vapour bubble near a free surface with and 
also without buoyancy forces affecting the fluid motion. Experimentally, this latter 
state is achieved by conducting the experiments in a falling rig. In  the calculations 
N and M are equal to either 16 or 32. Computations were performed on the 
UNIVAC 1100/60 computer at the University of Wollongong Computer Centre. 

3.1. Buoyancy forces omitted 
The bubble and free-surface shape at selected dimensionless times T are shown in 
figures 2 and 3 for y = 1.5 and 1.0 respectively. In  contrast to the rigid-boundary 
case, the lifetime of the bubble is shortened when the growth begins nearer to the 
free surface (smaller value of y) .  

During the growth phase in the y = 1.5 example the bubble grows almost 
spherically. The free surface is pushed up by the growth of the bubble. During the 
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FIQURE 2. Bubble and free-surface shapes for y = 1.5 during (a) expansion phase at dimensionless 
times (i) 0.0016, (ii) 0.136, (iii) 0.252, (iv) 0.452, (v) 0.668, (vi) 0.777, and (b) collapse phase at 
dimensionless times (i) 0.777, (ii) 1.252, (iii) 1.449, (iv) 1.547, and (v) 1.577. 
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FIQURE 3. Bubble and free-eurface shape for y = 1.0 during (a) expansion phase at dimensionless 
times (i) 0.0016, (ii) 0.149, (iii) 0.356, (iv) 0.506, ( v )  0.706, and (b) collapse phase at dimensionless 
times (i) 0.706, (ii) 0.930, (iii) 1.084, (iv) 1.186, (v) 1.310. 

collapse phase the free surface 'falls' with the collapse of the bubble. However the 
rate of 'fall' of the points near the axis of symmetry on the free surface is slightly 
slower than the rest of the points surrounding them resulting in a pronounced 
free-surface hump at the conclusion of the collapse phase. As the collapse progresses 
the surface of the bubble nearer to the free surface becomes flattened and forms a 
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FIQURE 4. Pathlines of selected fluid particles on the bubble and free surface for the caaes (a) y = 1.6 
and (a) 1.0. The bubbles and free surfaces shown are (i) initial, (ii) maximum volume and (iii) the 
final shape. 

jet directed away from the free surface. The jet is much broader than those in the 
rigid-boundary case. 

In  the second example (y  = 1 .O) ,  the surface of the bubble nearer to the free surface 
(top of the bubble) moves towards the free surface and is elongated in this direction, 
causing a substantial free-surface hump. As the expansion phase progresses, the top 
of the bubble is entrained into the base of the raised free surface. During the collapse 
phase the bubble migrates away from the free surface while the free-surface hump 
or ‘ spike ’ continues to grow along the axis of symmetry. Therefore, the free surface 
and the adjacent bubble surface are moving in opposite directions producing a 
stagnation point on the axis of symmetry between the two surfaces. Instantaneous 
streamlines clearly showing the stagnation point may be found in Cerone & Blake 
(1984) while velocity vectors are plotted in Taib (1985) to illustrate the phenomenon. 
The nonlinear interaction between the free surface and the bubble will be discussed 
further when we consider the pressure contours. 

Figure 4 shows the pathlines of selected particles on both the bubble and free 
surface together with three shapes of bubble and free surface, the initial, the 
maximum volume and the h a 1  for y = 1.5 and y = 1.0. On the bubble surface, the 
particles move almost radially during the growth phase. However, during the collapse 
phase, the particles ‘loop’ around with an initially inward radial motion before being 
swept into the liquid jet where particles move almost parallel to the axis of symmetry. 
During the expansion phase the particles on the free surface move almost parallel 
to the axis of symmetry but during the collapse phase the particles migrate towards 
the axis of symmetry. For the case y = 1.0, the particles near the axis of symmetry 
continue to move upwards towards the axis of symmetry, confirming that the 
free-surface hump or ‘spike’ and the liquid jet in the bubble are moving in opposite 
directions. 

In  figure 5, equispaced pressure contours are shown for the case of y = 1.0. The 
dimensionless times in the two examples are (a) 1.186, (b) 1.310. The point of 
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FIQURE 5. Equally spaced pressure contours for a vapour bubble near a free surface for the case 
y = 1.0 at dimensionless times (a) 1.186 and ( b )  1.310. A point of maximum pressure occurs on the 
axis of symmetry between the bubble and the free surface. 

maximum pressure is located on the axis of symmetry between the bubble and the 
free surface. The location of the stagnation point and the point of maximum pressure 
do not coincide as they would in steady flow. Similar phenomena were also predicted 
by Cerone & Blake (1984). During the bubble collapse phase, fluid is drawn in towards 
the bubble from the region of least mass (i.e. the region which corresponds to the 
shortest distance between the bubble and the free surface). As the collapse continues, 
a point of maximum pressure is created on the axis of symmetry forcing the fluid 
to move in opposite directions and thus creating an instantaneous stagnation point 
(see also Cerone & Blake 1984). 

Figures 6 and 7 compare the numerical and experimental bubble and free-surface 
shapes reported in Blake & Gibson (1981) for y = 1.68 and 0.98 respectively. In the 
first case, y = 1.68, the bubble and the free-surface shapes are in good agreement with 
the experimental observations of Blake & Gibson (1981) with the exception of the 
final bubble shape. In our model the jet is slightly broader than those observed 
experimentally. However, our final shape more closely resembles the bubble shape 
observed by Chahine (1977, see figure 9a for y = 1.67). 

In the second case, y = 0.98, the bubble and the free-surface shape during the 
growth phase are in general agreement with the experimental observations. The key 
feature is that, during the latter stages of the expansion phase, the bubble is entrained 
into the raised free surface. However, during the collapse phase, the theoretical model 
predicts the formation of a narrow jet relatively early on. The broader jet observed 
in the experiments may be due to interference with the jet by the electrodes in the 
experimental apparatus. The numerical model breaks down before the collapse is 
concluded. 

Figure 8 compares theory and experiment for the movement of the bubble centroid 
for y = 2.26, 1.68 and 0.98. During the early expansion phase there is a slight 
movement of the centroid towards the free surface in both theory and experiment. 
The centroid begins to move away from the free surface before the expansion phase 
concludes and this movement increases rapidly during the collapse phase. 

3.2. Buoyancy forces included 
In figures 9 and 10 we illustrate the cases y = 1.8 with 6 = 0.15 and 0.5 respectively 
(i.e. y8 = 0.27 and 0.9 respectively). In  the first example (figure 9), at maximum 
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FIQURE 6. Comparison of numerical calculations with experiment (from Blake & Gibson 1981) for 
the growth and collapse of a vapour bubble near a free surface at y = 1.68. Dimensionless times 
are (i) 0.102, (ii) 0.205, (iii) 0.307, (iv) 0.410, (v) 0.615, (vi) 0.820, (vii) 1.025, (viii) 1.230, (ix) 1.434, 
(x) 1.537, (xi) 1.609. (Note: time for numerical shape (xi) is 1.601.) 

volume, the bubble is slightly elongated towards the free surface. The free surface 
collapses with the collapse of the bubble and the bubble migrates away from the 
free surface with the jet directed away from it. During the collapse phase, for 
the 6 = 0.5 case, the bubble migrates towards the free surface with the broad jet 
directed towards it. 

We now consider the cases y = 1.24 with 6 = 0.2 and 0.8 (i.e. y6 = 0.248 and 0.992 
respectively). In  the early expansion phase for the case when 6 = 0.2 (figure 11) the 
bubble grows almost spherically. However, near the maximum volume, the top 
portion of the bubble is attracted towards the free surface by becoming elongated 
towards it. During the collapse phase, the bubble is repelled by the free surface. The 
bubble forms a liquid jet directed away from the free surface. The jet is becoming 
broader as the collapse progresses. 

In figure 12, with 6 = 0.8, the bubble is pushed nearer to the free surface. 
Physically this situation is unlikely to occur in the laboratory but may occur for large 
underwater explosion cavities. At maximum volume the top portion of the bubble 
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FIGURE 7. Comparison of numerical calculations with experiment (from Blake & Gibson 1981) for 
the growth and collapse of a vapour bubble near a free surface at y = 0.98. Dimensionless times 
are (i) 0.087, (ii) 0.173, (iii) 0.260, (iv) 0.347, (v) 0.520, (vi) 0.604, (vii) 0.867, (viii) 1.040, (ix) 1.214, 
(x) 1.300, (xi) 1.387, (xii) 1.474, (xiii) 1.508. (Note: time for numerical shape (x) is 1.251.) 

is entrained underneath the raised free surface. One would expect that during the 
collapse phase the free-surface hump would continue to grow. However, in this case, 
the free surface collapses with the collapse of the bubble. The physical explanation 
is that, as we shall see later, the maximum pressure no longer occurs between the 
bubble and the free surface, but at a point near the bottom of the bubble. As the 
collapse phase progresses, the bottom part of the bubble becomes flattened and forms 
a jet directed towards the free surface. 

The equispaced pressure contours for the cases of y = 1.24 with 6 = 0.2 and 0.8 
are illustrated in figure 13(a, b) at the dimensionless times (a) 1.523, (b) 1.556. In 
figure 13(a), the point of maximum pressure is located on the axis of symmetry 
between the bubble and the free surface while in figure 13(8), the point of maximum 
pressure is located underneath the bubble (i.e. on the opposite side of the bubble to 
the free surface). 
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FIGURE 8. Comparison of numerical calculations (-) with experiment (A, y = 0.98; +, 1.68; a, 
2.26) (from Blake & Gibson 1981) for the movement of the bubble centroid during the growth and 
collapse of a vapour bubble near a free surface. 
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FIGURE 9. Bubble and free-surface shapes for y = 1.8 and d = 0.15 (yd = 0.27) during (a) expanaion 
phase a t  dimensionless times (i) 0.0016, (ii) 0.117, (iii) 0.235, (iv) 0.469, (v) 0.666, and (b) collapse 
phase at  dimensionless times (i) 0.666, (ii) 1.391, (iii) 1.585, (iv) 1.617, (v) 1.631. 
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FIGURE 10. Bubble and free surface shapes for y = 1.8 and 8 = 0.5 (78 = 0.9) during (a )  expansion 
phase at dimensionless times (i) 0.0016, (ii) 0.077, (iii) 0.227, (iv) 0.480, (v) 0.821, and (b) collapse 
phase at dimensionless times (i) 0.821, (ii) 1.360, (iii) 1.472, (iv) 1.564, (v) 1.645. 
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FIGURE 11. Bubble and free surface shapes for y = 1.24 and 8 = 0.2 (78 = 0.248) during (a) 
expansion phase at dimensionless times (i) 0.0016, (ii) 0.063, (iii) 0.115, (iv) 0.207, (v) 0.407, (vi) 
0.757, and (b) collapse phase a t  dimensionless times (i) 0.757, (ii) 1.082, (iii) 1.254, (iv) 1.431, (v) 
1.523. 
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FIGURE 12. Bubble and free surface shapes for y = 1.24 and 6 = 0.8 (yb = 0.992) during (a) 
expansion phase at dimensionless times (i) 0.0016, (ii) 0.062, (iii) 0.111, (iv) 0.193, (v) 0.387, (vi) 
0.812, and (b) collapse phase at dimensionless times (i) 0.812, (ii) 1.131, (iii) 1.230, (iv) 1.405, (v) 
1.556. 

FIQURE 13. Equally spaced pressure contours for a vapour bubble near a free surface, for the case 
y = 1.24 and (a) S = 0.2 a t  dimensionless time 1.523. A point of maximum pressure occurs on the 
axis of symmetry between the bubble and the free surface. (b) S = 0.8 at dimensionless time 1.556. 
A point of maximum pressure occurs on the axis of symmetry near the lower portion of the bubble. 

4. Kelvin impulse 
Following the ideas on the Kelvin impulse in Part 1, we may represent the growth 

and collapse phases of the cavitation bubble by a time-varying strength source m(t). 
Thus, from Blake et al. (1984) we obtain the following expression for the 2-component 
of the 'force' F: 

F,(t) = -pqV(t)+--- pm2 pg mf (t-T)m(T)dT+O rirg2). - (14) 
16nh2 8nh9 ,, 
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FIQURE 14. Graphical tabulation of numerical calculations and experimental studies conducted at 
different parameter values of y and 8. The arrows indicate direction of jet and bubble migration. 
The null-Kelvin-impulse lines corresponding to Po = y6 = 0.442 and PI, which is the solution of 
(lsb), are shown on the diagram. 

The Kelvin impulse at the completion of the bubble collapse is 

which yields, upon integration, for large y 

where B(z,  y )  is a beta function. 
The null-impulse curve for the two parameters (y,  8) may be obtained by equating 

Iz(5'!,) to zero. For large y we may equate either the first two or first three terms in 
(15b) to zero. This yields either 

which corresponds to the curve on figure 14. As can be seen, the two curves are 
almost identical except for y near 1, where the theory is not strictly valid in any event. 

Apart from the two curves on figure 14, experimental and computer-simulation 
predictions of bubble migration are also indicated. Again it is found that the Kelvin 
impulse appears to determine the response behaviour of a bubble near a boundary, 
in this c&se a free surface. 
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5. Conclusions 
In  this paper we have considered the growth and collapse of a buoyant vapour 

bubble near a free surface. While a free surface repels the pulsating bubble through 
the Bjerknes effect, buoyancy forces act in the opposite direction and may induce 
the bubble to migrate towards the free surface. The Kelvin impulse of the bubble 
appears to yield the criterion that determines the bubble’s motion. From these 
calculations it appears that y6 x 0.442 determines the null-impulse line which 
separates the parameter space determining the bubble’s migratory behaviour. 

The numerical simulations performed in the paper indicate that the nonlinear 
terms in the free-surface boundary condition become extremely important for 
y < 1.5. The examples at  y = 1 .O and 0.98 (cf. experiment) clearly indicate this, with 
a high-speed free-surface jet (‘spike’) being formed even during the collapse phase. 
This leads to the phenomenon of a stagnation point appearing in the main body of 
fluid between the bubble and the free surface. A point of maximum pressure also 
occurs between the two surfaces, although it is a t  a different location to the stagnation 
point: a product of the unsteady fluid mechanics. The closer the bubble is to the free 
surface, the narrower the jet penetrating the bubble, a phenomenon noted in previous 
studies (Chahine 1977; Blake & Gibson 1981). 

Buoyancy forces can reverse the direction of bubble migration provided 
y6 > 0.442, in which case the bubble moves towards the free surface. In these cases 
a relatively broad jet is formed, plunging through the bubble from underneath. While 
the free surface suffers a significant nonlinear deformation for small y-values, it  does 
not suffer the extreme deformations of the gravity-free case when the maximum 
pressure is between the bubble and free surface. 

The motion of a cavitation bubble near a boundary depends on a number of factors : 
the distance from the boundary, the properties of the boundary and the ambient 
velocity and pressure fields. In Part 1 and this paper we have considered two types 
of boundaries (i.e. rigid boundary and free surface) whose properties result in opposite 
responses of the bubble: the rigid boundary attracts the bubble, the free surface repels 
it. Externally imposed flow effects can dramatically alter the behaviour of the bubble 
indicating that a thorough understanding of a cavitation-bubble dynamics will 
require full details of the lifetime dynamics of a bubble. 

These two papers have provided us with several of the criteria that determine the 
motion of a cavitating bubble near a boundary together with a more detailed 
understanding of the small-scale physics near the bubble. 
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